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Two kinds of transonic flows are considered in this paper, viz. the free sonic stream past 
a profile, and the flow in a symmetric Lava1 nozzle, both in the presence of a weak shock 
wave. The flows are analyzed in the a$ -plane. In the neighborhood of the sonic stream 
boundary, or of the nozzle axis* the shock wave assumed to be approximately normal. Exact. 
nonself-similar solutions 8, q of the Falkovich nonlinear transonic equations corresponding 
to such flows are derived, 

1. We shall consider two~~ensional transonic flows of a perfect gas in the presence 
of shock waves. With a weak shock the velocities in the stream do not differ appreciably 
from the critical velocity of sound, and if the stream vorticity is neglected, we find that 
Frsukl’s variables [I] 8, 7 satisfy the system of Eqe. (1.Q 

arl B NJ ae arl w==- 0x9 *=Borl-;iii;, B, = (k + *)‘i* (!+ , k+ 

Here q~ is the velocity potential, and $ tbe stream function. We shall assume that the 
shock is normal, i.e. that all streamlines intersect the latter at a straight angle. Selecting 
the origin of the xy -coordinates at a certain characteristic point A of the shock wave, and 
the x-axis oriented in the direction of the flow velocity, we find that along a normal shock 
waveI3m0, (pzO[3]. 

Let ip > 0 upstream of the shock wave, and ‘p < 0 downstream of it, with $J = 0 along 
the streamline passing through the characteristic point A (z = y = 0). 

For a weak normal transonic shock wave the following conditions must be fulfilled [3] 

0 (0, $) = 0, rl (+ 0, 4)) = -7 (4 9) (1.2) 
A solution of system (1.1) which would satisfy the first of conditions (1.2) may be 

sought in the form of a power series [41 

(i-3) 

It follows from the second of conditions (1.21 that z. (9) + 0. We shall derive the 
exact solution of system (1.1) by retaining the first two terms of expansion (1.3) (retention 
of the first term only would yield a simple self-similar solution of system (1.1)). 

Then the solution upstream of the shock wave is of the form 

8 = 12’0 (9) +l/s z‘l(9)cpa1cp, rl = --Bo[% (II) + z1 wcp21 
in which functions z. (q) and z1 (9) satisfy Eqs. 

(CpZO) (1.4) 
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21 It = 6-23,” .$a, 20 ” = 2B03z1zo 

Downstream of the shock the solution of (I.11 is of the form 

(1.5) 

(1 XJ) 

8 = lz,’ w - l/3 21’ ($4 $1 (-913 rl = & xzo b-b) - -3 wtp21 fits < ot 
It follows from (1.2) and (1.5) that functions z. and z1 appearing in (1.8 and (1.6) are 

the same, while .~o ($) > 0. 
The solution of system (1.1) in the form (1.4) was derived by Tomotika and Tamada [5] 

and was used for the andysis of a shockless transonic flow in a symmetric two-throated La- 
vaf nozzle. Here this solution is applied to flows in the presence of shock waves. We note 
that the assumption of zo zz 0 (no shock) yields the solution derived by Ovsiannikov [43 
which describes a flow of gas with a normal sonic line. 

The transposition of the derived solution from the rp $.-plane into the zy flow plane is 
achieved with the aid of Formulas 

while for the motion of a Trikomi gas subject to system (I.11 the following relationships 
hold t63 

m!.!e,I,Bod_~ _tht. v&@_ 
P" dq v 1 “Irl PU v 

It follows from this that function l/u = f(q 1 satisfies the Airy equation [6 and 71 

f” - %I# = 0 

a*,f (0) = 1, n*f’ (0) = (k i_ 1>“!2 

where a* is the critical velocity of sound at initial conditions. 
Hence, ZJ and p / p. may be expressed [S and 71 by Airy’s functions Ai and Bi (r$ 

2. We shall consider a stream flowing past a profile in which a shock wave is enerated 
Let a plane sonic stream of a perfect gas emer rom a 
slit in a vessel wall flow past a profile (Fig. 

Fig. 1 

At the stream free boundary the velocity-is sonic @f = 1, 

T= 01, while upstream of the sonic line CD the flow in the 
stream is subsonic, and becomes supersonic downstream of 
that line. 

The symmetric vortex-free flow of gas at some distance 
from a profile 
analyzed infg P 

laced in a sufficiently wide sonic stream was 
up to the limiting characteristic CE, and it 

was shown in that_p_aper that the flow in the neighborhood 
of point C conforms to the Barsntsev’s solution (191 Chapter IV), therefore C is an inflection 
point of the stream boundary, Beyond that point the angle of inclination of the stream boun- 
dary to its axis decreases monotonously; the supersonic stream is slowed down by shock 
waves (the first of these is shown on Fig. 1 by lfne AB). 

We shall investigate the flow in the neighborhood of the stream boundary CA, and shalf. 

assume tbe shock wave to be there normal. Let Ip = 0 along CA and 9 > 0 within the 
stream itself. 

Conditions (1.2) must be supplemented by condition at the free sonic stream boundary 

rl (cpl 0) = 0 (2.1) 
Hence, from (1.4) and. (1.6) we have 

go (01 = 0, 21 (0) = 0, % (III > 0 i*>tN (2.3 
From fL5f and 12.2) follows 

(z~‘)~ = 4B,* Z13 + IZlf fO)yJ 
and ~1 ($) may be expressed [lOI in terms of the Weierstrass elliptic function @ (u; g,, 
g3) with parameters g, = 0, fr, = -4, cz = -1 

e(9)= N2Bo-38 (u), b(a) = B (22; 0, - 4) 
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21) (9) = w/wB’ (ul* u=N$+a (O<U<2@, N>O) (2.3) 
Function p (u) satisfies Eq. (~‘)~ = &p3 f 4. It follows from (2.2) that Zis a 

zero of function 8 (U). 
Because A = gz9 - 27ga2 < 0,‘e2 < 0, therefore & (u; o,- 4) has zeros (two) 

in the fundamental parallelogram for real values of u only, and the function itself is then 
real ([ll] Section 86). Therefore N and ~.in (2.3) are real constants (by virtue of parity of 

we consider N > 01, 0 < u < 20, where o is the real half-period of 8 (u) (see 

0 = (2.4) 

In the fundamental interval (0, 2 o 1 function ?? (U) is symmetric with respect to point 
s = o, at which p (w) = --1. Because p(u) = 2’/* p (2; 0, -I), 5 = 2’18 U, we 
can make use of the graph of function p (2; 0, -4) given in [5]. We denote the a-zeros 

of function p (?A) by CQ and a, (0 <u, < U, < 20) and we obtain 
0 

I 

dz 
al = 

2f/1+x* 
(2.5) 

Expressing integrals (2.4) and (2.5) in Arms of gamma-functions [lo], we obtain 

a, = Y.3 0, a, = %J f@ (2.6) 

i.e. the zeros of b (u} subdivide interval (0, 20) into three equal parts [4, 5 and 91, with 

fJP’ (%) = -2, b’ (a& = 2. 
We adduce several particular values of this function 

!+)=a, s(+)=~-l, !@)=o, P;“(o)=----1 

We shall now determine function ho (9). It f o 11 ows from (1.51, (2.21, (2.31 that a, (9) = 
= R (u) (where u = N t# -j- a 1 satisfies linear equation 

Ii” (u)= 2b (a) R (u) f~d~<2@> 12.71 
with initial conditions 

R (a) - 0, R’ (a) > 0 (2.8) 

It may be readily ascertained that the general solution of (2.7) is [ 51 

R (u) = AI [@‘(u) + 2p* + Aa [8’ (u) - a”* (2.9) 
Hence two solutions corresponding to zeros al and az of function p (u) which 

will satisfy conditions (2.2) and (2.8) can be obtained : 
the first ( u = q 1 

zo($) = R(U) = fv2Bo”q+s [P’(u) + 21”” (ar<u<2w) 
(2.10) 

zo’ (q?) = NR’ (u) = 2-‘/s (iv/B*)9 I2‘-- fr (u)p?2 
thesecond(a=(re) 

(u=N\Ptal) 

20’ ($1 = 2+ (N/&pP,a [f?’ (u) + 2p (u = N$ f ~2) 

Here Cpo is a certain constant. 
We shall derive the solution of (1.1) corresponding to the flow in the neighborhood of 

boundary CA shown on Fig. 1. In order to have a11 streamlines intersecting the sonic line 
rI= 0 upstream of the shook wave, it is necessary to stipulate in (1.41 where Zu (9) > 0 
that Z, (t#) < 0, hence it follows from (2.3) that 

fP (u) G 0, a = a, (a, < u < %) 

The solution of the system for such flow is of the form 

e=.(N/BB)*[zJ!~cp,a12--‘(u)I*/~I(Pf +~/~qf~fF(u)l, (u=N$-/-311) (2.12) 
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‘1 = - (N/&d2 QT: IB’ (a) + 21”3 sgn cp + (Pv @If (0 < mp <Qa) 
Upstream of the ahock wave the equation of the sonic line is 

cp = 2”6pc [ 2 - 8’ (u) f-“* (aldu<a cp,>O) (2.13) 

and intersects the sonic boundary at point C (where 
shock wave a flow corresponding to solution (2.12) 

up = ‘po > 0 ). Downstream of the 
is throughout subsonic. There are two 

lines 0 = 0, one upstream of the shock 

‘P=2”“y’5cp,l2--B’II”(-~)“” (alQu<a, OdN*<*/aw) 
the other downstream of it 

Ql = - 2”‘* J/5$& 12 - 8’ f” (gy’” (O<I6<%, ‘/so<~P1<a/ac4 

The pattern of behavior of solution (2.12) in the q$-plane is shown on Fig. 2. Trans- 

position onto the stream plane is carried out with the aid of 
Formulas (1.7). The gas flow pattern is shown on Fig. 3, 
where streamline Nq = c, I/S w < c < 2fa o is assumed 
to be a solid waif. In the neighborhood of point A the stream 
boundary is expressed by Eq. 

y = (N i B,J8 a,q,‘Lx2 sgn x 

The appearance of shock wave AB in the stream on Fig. 
3 is due to the absence of profile convexity in the superso- 

nic zone (see, e.g., 112 and 131 in which flows in the local 

Fig. 2 
supersonic zone along the profile are analyzed). 

We shall investigate solution (2.12) in the neighborhood 
of point C, which is the point of intersection of sonic line 
CD with tbe sonic boundary FA. With this in view we expand 
(2.12) into-a series in powers of u - a, = N$ and 9 - 
- ~po = Cp, taking into account that at point C 

$=O, e=o (0 = e - eer 

e, = *h w i ~~)3~3~~ 

Fig. 3 
As for u ==: a, 

+? (U) = ---A (U - a,) + 2 (24 - al)” - a/, (u - a,)‘+... 
then retaining in the expansion of (2.12) tbe dominant terms only, we obtain the following 
solution of system (1.1) in the intersection neighborhood of sonic lines [9]: 

0 = - a(p2 + “i3 Bo3a2q q3 - l,f9 ~6~a~t6 

q = 2B,a cpj~ - ‘j3 B4,a2+ (2.14) 

a = 2 W /&J3~c 
where dashes over Cp and 8 have been omitted, 

Thus the nonself-similar solution (2.12) of system (1.1) in the neighborhood of the sonic 
stream boundary CA (Fig. 1) defines the transonic flow of a perfect gas past a profile, in- 
cluding a shock wave. 

If in (2.12) parameter (ho 3 0, then sonic line CD (Fig. 3) approaches shock A3 the in- 
tensity of which decreases, and at the limit when go = 0 this solution becomes the Ov- 
siannikov’s solution [4] which describes a subsonic fiow with a normal sonic line. 

3. Motion of gas in a Lava1 nozzle with a shock wave in its dis- 
charge part. We can derive in a similar manner a nonself-similar solution of system 
(1.1) for the case of a transonic flow of gas iu a symmetric Lava1 nozzle in the presence of 
a weak shock wave A3 in its discharge part (Fig. 41. The shock in the nozzle axis proxim- 
ity may be considered to be normal. 

Let 9 = 0 along the nozzle axis, and 9 > O,below it. By virtue of the parity of 

function za ($I) > 0 and z1 ($) which d f e ine a symmetric flow of gas we have from 
(1.4) and (1.6) 
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do (0) = 0, 2’1 (0) = 0 (3.1) 
From the condition of intersection of all streamlines with the sonic line upstream of the 

shock wave, we derive that in (1.4) z1 ($j < 0. Integrating 
(1.5). and taking into account (3.11, we find that 

(z’$ = 4 B,3 q3 - 4 B,3 [z, (O)]” 
Function 21 (9) may, therefore, be expressed in terms of 

function ho (u) = ?$o (u; 0, -_4), which is negative when CZ, < 
< U < Uz (see Section 21 

z1 (4) = W/Bus) Yo (u), 21’ (qj = (W&J3 V (u) 
Fig. 4 

(u=iVq+o, N>O, ul<u<ad (3.2) 
The even solution z,($) = R, (u) > 0 (U = N’I/J i- 

+ w) satisfying Eq. (2.7) is [S] 

z‘,(9) = R,(u) = 2-4/3(N2/B03)~C2([~‘(z~) + 

+ 2p + [ 2 - f?’ (u@} 
h’(9) = NR,‘(u) = 2-6~~(N/B,)Qpc2{[2- (3.3) 

-fY(u)p- [a +Y”‘(u)p} 
(al< u < ~1 (u=Nl~+m) 

_@ 
3 The constant cpc in (3.3) will be defined later. 

Fig. 5 
The solution of system (1.11 corresponding to a transonic 

flow in a Lava1 nozzle in the presence of a shock wave is of 

the form 

8 = (N/Boj3 { 2-‘@: [ (2 - %d’)” - (2 + f?‘)““] 1‘7 1 + ‘/s’P~%~‘} 

17 = - ( N/Bo)2 { 2-‘@,2 [ (2 + ??‘)l, + (2 - %“)‘“I sgn Cp + cp”ff’} 
(3.4) 

This solution (up to the straight line AB on Fig. 4) was derived in [S], in this exercise 
it is, however, extended beyond line AB as a continuous and symmetric one relative to that 
line. In this case it would be unrealistic on physical grounds to expect a continuous com- 
pression of the supersonic stream in the second constriction of the nozzle. 

If AB is assumed to be a shock wave, and the solution extended beyond it, then the flow 
in a single-throated nozzle (Fig. 4) with walls having inflection points in its discharge part 
would be obtained. 

The pattern of behavior of solution (3.4) in the q$ -plane is plotted on Fig. 5. 
The sonic line equation upstream of the shock wave is 

cp = 2-*iac& [ (2 + ~~‘)‘i~ + (2 - ~‘)‘/*]‘/2 (_ P)J/r (3.5) 

(al<u<% u=N$+o) 
and it intersects the nozzle axis at center C (where up = (9c > 0). There is also a line 
0 = 0 upstream of the shock wave which passes through C. 

For cp, = 0 solution (3.4) becomes a solution defining’a symmetric subsonic flow 
with a normal sonic line [4]. 

If solution (3.4) is expanded in the neighborhood of point C (where I$ = Cl, 9 = cp, > 0, 
?l = 8 = 0) into series in powers of u - 0 = N I# and Q = cp - (mu, and dominant 
terms only retained in the latter, then, taking into account that 

8 (U) = -1 + 3 (U - ojz - 3 (u - 0)4+... for UZo 

we obtain the solution of (1.1) derived by Falkovich [2] which defines a transonic flow in 

the neighborhood of the nozzle center C 

0 = B, a2 cp $ - 1/eB,3a3$3, q = arp - ‘j2B,,“a2$” 

a = 2 (N / &PP, (3.6) 
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in which the dash over (p has been omitted. 

Solution (3.4) defines a transonic flow near the Lava1 nozzle axis, with a shock wave in 

its discharge part. A similar viscous flow in a Lava1 nozzle in the presence of a shock 

wave was recently investigated in [14]. When the intensity of a curved shock wave at the 

nozzle axis is zero, then the shock origin is at the nozzle center, in the vicinity of which 

the flow can be analyzed with aid of self-similar solutions of transonic flows 1151. 

Solutions of the Tricomi equation q$ou -i- $,,,, = 0 in the 8q-plane may be derived for 

corresponding flows by eliminating potential ‘f from (2.121 and (3.4). 

Other transonic flows with shock waves such as, for example, the flow of a supersonic 

stream with a shock wave and a free boundary past a rigid plate can be analyzed with the 

aid of solution (2.11). 
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